
Comparing Two of Decentralized
Identity’s Leading Governance Models

Decentralized identity (DI) systems
deliver many advancements, such
as increased security, enhanced
privacy, and better fault tolerance. DI
architectures also provide new types
of elements, including decentralized
identifiers (DIDs), verifiable credentials
(VCs), and a novel approach to system
governance.

Traditional centralized systems are
set up for the provider to control all
aspects of system operation, security,
analytics, memberships, features,
etc.—even when such aspects are not
publicized to users. While this type of
opaque approach is understandable, DI
introduces a transparent model that is
both human- and machine-readable.

Two of DI’s leading governance models
are trust registries (from Trust Over IP or
ToIP) and trust establishment (from the
Decentralized Identity Foundation or
DIF). On the surface, these models may
appear to be in competition; however,
their features and capabilities actually
make them rather serendipitous, and
users may find them mutually beneficial.

https://anonyome.com/2023/05/7-insights-into-progress-on-the-path-to-decentralized-identity-dr-paul-ashley/
https://anonyome.com/2022/06/simple-definitions-for-complex-terms-in-decentralized-identity%EF%BF%BC/
https://anonyome.com/2022/06/simple-definitions-for-complex-terms-in-decentralized-identity%EF%BF%BC/
https://anonyome.com/2023/03/verifiable-credentials-the-killer-feature-of-decentralized-identity/
https://trustoverip.org
https://identity.foundation

ToIP’s Governance Stack Working Group created the Trust Registry
model, which presents the governance concepts using the four-layer ToIP

architecture stack:

What is a trust registry?

In the ToIP model, the four layers define a full technology architecture ecosystem:

Layer 1:
defines a class
of interoperable
public utilities that
enable DIDs to be
immutably correlated
with author-
provided data (e.g.,
cryptographic keys,
communication
addresses, etc.).
Layer 1 utilities usually
take the form of a
cryptographic ledger
or blockchain.

Layer 2:
defines one or
more methods by
which ecosystem
participants may
communicate
securely.
Arguably the most
advanced Layer
2 communication
method is DIDComm
from DIF.

Layer 3:
introduces VCs
along with methods
of issuing, holding,
and verifying
them. Leading VC
standards include
W3C Verifiable
Credentials and
AnonCreds from
Hyperledger.

Layer 4:
describes application
ecosystems, which
are loosely analogous
to large enterprise
platforms or multiple
interoperable
platforms.

Figure 1 - ToIP architecture stack

ToIP Technology Stack ToIP Governance Stack

Application Ecosystems Ecosystem Governance Frameworks

Health Supply Finance
Governing
Authority

Ecosystem
Framework

Ecosystem
Roles

Peer-to-Peer Communication Agent/Wallet Governance Frameworks

Governing
Authority

Agent/Wallet
Framework

Agent/Wallet
Provider

Roles
Agent/Wallet Agent/Wallet

DIDDID

Public Utilities Utility Governance Frameworks

Governing
Authority

Utility
Framework

Utility
Operator

Roles

Utlity 1 Utlity 2

DID Method 1 DID Method 1

Trust Task Governance FrameworksTrust Task Protocols

Credential
Framework

Credential
Exchange

Roles

Governing
Authority

Issuer Verifier

Holder

https://wiki.trustoverip.org/display/HOME/Governance+Stack+Working+Group
https://didcomm.org
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://hyperledger.github.io/anoncreds-spec/
https://www.hyperledger.org

While the ToIP architectural model will be
described in other sources, this high-level
description has been given to assist in
understanding how governance is applied to
this stack. As depicted on the right side of the
ToIP architecture stack (see Figure 1), a separate
governance model is uniquely applied to each
layer. For example, a Layer 1 ledger will have its
own governance model that is separate from a
Layer 2 communication protocol that uses Layer 1
services. Similarly, Layer 3 and 4 services will also
have their own unique governance models. Layer
4 also introduces a trust registry, which will be
described below. Since the governance models
of upper layers may need to anticipate certain
operational aspects of underlying layers, they
may contain some governance requirements
that describe their methods of interaction or
reliance on the lower layers.

1.Primary document – This serves as the “home page” for the GF
that specifies an identifying DID, a description of the system being
governed, which ToIP document versions are being used, links
to external sites, governing authority descriptions, administering
authority, purpose, scope, objectives, principles, requirements,
revisions, extensions, and a list of controlled documents.

2.Controlled documents (each document is optional) are –
	 a. Glossary
	 b. Risk assessment
	 c.Trust assurance and certification
	 d. Governance requirements
	 e. Business requirements
	 f. Technical requirements
	 g. Information trust requirements
	 h. Inclusion, equitability, and accessibility requirements
	 i. Legal agreements

ToIP’s approach is to create a governance
framework (GF) that guides organizations in
creating their own governance model more than
specifying exactly what rules and descriptions
a governance model must contain. In other
words, it is a process for creating a governance
model rather than a pre-existing governance
model to be applied. This process may even
evolve into a certification process that evaluates
how well an organization’s governance model
conforms to recommended industry standards.
There are several steps in this process, which
are encapsulated in the ToIP Governance
Metamodel Specification. The metamodel
describes the process for creating:

This further demonstrates that what ToIP has created isn’t a governance model per se, but rather the
process for creating one. Quite often, teams creating DI systems don’t know where to start when
defining governance for their systems and the ToIP model is an excellent roadmap. This approach
should be very familiar to software engineers who have used similar document-oriented roadmap
definition processes when developing large software systems. According to the ToIP architecture
stack diagram (see Figure 1), this process can be performed at each of the four ToIP layers.

Once a governing authority has developed a ToIP GF, it will make it available to ecosystem
participants. Figure 2 gives a high-level view of the ToIP operational ecosystem and highlights the
governing authority’s trust registry (i.e., as defined by Layer 4 in the ToIP governance stack):

Figure 2 - ToIP operational ecosystem overview

As shown in Figure 2, the trust registry is
embodied as an internet-accessible service
endpoint (e.g., server) that provides a callable
API for participant processes to invoke
during the issuance and usage of VCs. This
is described in the Trust Registry Protocol V1
Specification as:

“A core role within Layer 4 of the ToIP stack is
a trust registry … This is a network service that
enables the governing authority for an ecosystem
governance framework (EGF) to specify what
governed parties are authorized to perform what
actions under the EGF.”

Rules EngineRules Engine Holder

Credential

Issuer

Trust Registry

Governing Authority
Governance Framework

Verifier

Proof

Using this process, issuers and verifiers will
register with the trust registry. When a verifier
requests a credential proof from a holder, the
holder can query the trust registry to ensure
the integrity of the VC proof request process.
Similarly, when a verifier receives a VC proof,
it can query the trust registry to ensure the
integrity of the proof expression. Using this
operational model, the trust registry performs
a pivotal role in the VC issuance and usage
processes.

https://github.com/trustoverip/tswg-trust-registry-tf/blob/main/v1/docs/ToIP%20Trust%20Registry%20V1%20Specification.md
https://github.com/trustoverip/tswg-trust-registry-tf/blob/main/v1/docs/ToIP%20Trust%20Registry%20V1%20Specification.md
https://github.com/trustoverip/tswg-trust-registry-tf/blob/main/v1/docs/ToIP%20Trust%20Registry%20V1%20Specification.md

What is trust establishment?
While ToIP’s GF processes appear best suited
for enterprise-level ecosystem efforts, the trust
establishment (TE) processes that DIF is creating are
intended to be much simpler. According to the Trust
Establishment 1.0 document:

“Supporting trust decisions in decentralized
identity architectures, particularly open-world
architectures, is a problem that many have tried to
solve. This specification aims to describe a practical,
interoperable building block for supporting multiple
different kinds of trust-decision Trust Establishment
solutions. We define here a lightweight trust
document: a means by which a Party communicates
their assertions for a Topic about a set of Parties.”

The TE document further describes:
“This specification describes only the data model of
trust documents and is not opinionated on document
integrity, format, publication, or discovery.”

Rather than presenting a series of processes by
which a GF can produce a governance model, the
DIF specification provides a single “lightweight trust
document” that produces a governance data model.

Since the TE does not require a particular data format,
it can be embodied in many formats. In one instance,
it can be used through an internet-accessible API as
is specified for the ToIP trust registry/governance
model solution. However, it is most commonly
described as a cryptographically signed and JSON-
formatted document that can be downloaded from a
website, immutable data source, or a provider’s own
service.

The TE is a newly emerging specification and will
likely undergo many enhancements and updates.
At present, Section 5 of the TE describes the data
model and provides a series of required and optional
properties, as follows:

• id – The object MUST contain an id property. The value of this property MUST be a 	
 string. The string SHOULD provide a unique ID for the desired context.
• author – The object MUST contain an author property. The value of this 		
	 property MUST be a string value representing the DID of the author.
• created – The object MUST contain a created property proving a date-time 	
	 value for when the object was created. The value of this property 	
	 MUST be an RFC 3339 compliant timestamp value.
• validFrom – The object MUST contain a validFrom property proving a date-		
 	 time value for when the object is to be used. The value of this
	 property MUST be an RFC 3339 compliant timestamp value.
• validUntil – The object MAY contain a validUntil property proving a
	 date-time value for when the object is no longer to be used. The 	
	 value of this property MUST be an RFC 3339 compliant
	 timestamp value.
• version – The object MAY contain a version property. If present, the value of this 	
	 property MUST be a string that uniquely identifies the instance
	 of this document.
• entries – The object MUST contain an entries property that represents 		
	 combinations of topics and entities for trust statements.
 Its value MUST be a JSON object composed as follows:
	 o The object MUST have map keys as string values identifying the topic 	
	 of the TE document.
	 o The object MUST have map values as JSON objects, containing JSON 	
	 maps and MUST be composed as follows:
		 • MUST have map keys as DIDs which identify parties for which trust is 	
		 being expressed.
		 • MUST have map values as JSON objects conforming to the 		
		 associated schema of the parent topic value.

https://identity.foundation/trust-establishment/
https://identity.foundation/trust-establishment/
https://identity.foundation/trust-establishment/
https://identity.foundation/trust-establishment/
https://identity.foundation/trust-establishment/#data-models

Using JSON formatting, Figure 3 provides an example of how several of the above properties
would appear:

{
 “id”: “32f54163-7166-48f1-93d8-ff217bdb0653”,
 “author”: “did:example:alice”,
 “created”: “2022-04-20T04:20:00Z”,
 “version”: “0.0.3”,
 “entries”: {
 “https://example.com/trusted-supplier.schema.json”: {
 “did:example:bob”: {
 “on_time_percentage”: 92,
 “goods”: [“basmati”, “jasmine”, “sushi”]
 },
 “did:example:carol”: {
 “on_time_percentage”: 74,
 “goods”: [“long-grain”, “short-grain”, “extra glutinous”]
 }
 },
 “https://example.com/other.schema.json”:{
 “did:example:bob”: {
 “foo”: “bar”
 },
 “did:example:carol”: {
 “foo”: “baz”
 }
 }
 }
}

Figure 3 – TE properties in JSON format

Building upon the previous depiction, Figure 4 illustrates a more complex trust document that
in this instance is packaged as a verifiable credential:

{
 “@context”: [
 “https://www.w3.org/2018/credentials/v1”,
 “https://www.w3.org/2018/credentials/examples/v1”
],
 “id”: “http://example.edu/credentials/3732”,
 “type”: [“VerifiableCredential”, “TrustEstablishment”, “TrustedSuppliers”],
 “issuer”: “did:example:alice”,
 “issuanceDate”: “2010-01-01T00:00:00Z”,
 “credentialSubject”: {
 “id”: “did:example:ebfeb1f712ebc6f1c276e12ec21”,
 “trustEstablishment”: {
 “id”: “32f54163-7166-48f1-93d8-ff217bdb0653”,
 “author”: “did:example:alice”,
 “created”: “2010-01-01T19:23:24Z”,
 “version”: “0.0.3”,
 “entries”: {
 “https://example.com/trusted-supplier.schema.json”: {
 “did:example:bob”: {
 “on_time_percentage”: 92,
 “goods”: [“basmati”, “jasmine”, “sushi”]
 },
 “did:example:carol”: {
 “on_time_percentage”: 74,
 “goods”: [“short-grain”, “long-grain”, “extra glutinous”]
 }
 }
 }
 }
 },
 “proof”: {
 	 “type”: “Ed25519Signature2020”,
 “created”: “2021-11-13T18:19:39Z”,
 “verificationMethod”: “did:example:alice#key-1”,
 “proofPurpose”: “assertionMethod”,
 “proofValue”:
 “z58DAdFfa9SkqZMVPxAQpic7ndSayn1PzZs6ZjWp1CktyGesjuTSwRdoWhAfGFCF5bppETSTojQCrfFPP2oumHKtz”
 }
}

Figure 4 – Trust document as a verifiable credential proofed by data integrity

If deployed to known locations (e.g., a provider’s GitHub page,
website, etc.), calling entities need to know where to look (e.g.,
DID or URI) and the protocol for requesting the document. If
deployed on the target entity itself, the TE document is easily
referenced in the DID document of the target entity’s DID. In
either case, the DID used to sign the TE (i.e., create its digital
signature) must be anchored in a secure location, such as an
immutable ledger. This will provide reliable security integrity for
the TE while enabling it to be stored in a conveniently accessible
location rather than on an immutable data source itself.

Regardless of the implementation, the TE specification’s
designers intended for its preferred delivery method to be
a complete download of the document as a whole. With the
downloaded document, a requesting entity can archive it
for continued use and only request updates periodically.

Using the trust document specification as described enables the rapid creation of governance/
trust models that can be quickly used in a wide variety of platforms.

Since the TE document specification is only intended to describe creating a data model, how it is
published or delivered is left up to the implementer’s discretion. That said, the specification gives a
couple of considerations for delivery:

1.	 Known locations – These enable TE documents to be located via crawling a known set of
endpoints or some other common routing mechanisms; DIDs with service endpoints offer one
abstraction for layering these and integrating them into discovery processes.

2.	 Query target entities – These enable querying for all or some subset of TE documents from a
target entity via common DID-based data query/interaction protocols.

How do the ToIP and
DIF solutions compare?
The ToIP solution is architected to align with the
software engineering processes of larger entities
while the DIF solution is intended to fulfill targeted
development needs. As such, they are difficult to
compare since they do not have the same elements
and address different organizational requirements.

Despite their difference in target applications, there
is some potential serendipity. The ToIP solution
emphasizes an engineering approach for creating
the eventual governance data model. Despite its
simplicity, the DIF approach gets to the heart of
creating the data model given the goals of the model’s
designer. Given that the ToIP processes emphasize
how to design the data model while the DIF solution
emphasizes how to embody the data model once it’s
created, perhaps they will follow each other through
the development process. From this perspective, the
ToIP processes could define what needs to go into a
governance data model while the DIF solution could
define how that is to be done. This perspective moves
the respective solutions from alternatives to parts of
the same process.

Regardless of whether the respective paradigms
are used jointly or separately, there is one caution
that must be pointed out: The web-accessible API
model that trust registries employ enables targeted
requests for data controlled under the governance
model. This may create a phone home scenario
where requestors are providing subject, sequence,
or timing information to the trust registry and this
could be used to track individual usage and cause
a number of privacy issues. Conversely, the single
download option that the TE specification presents
enables requestors to download the TE once and
reuse it many times. This difference eliminates the
phone home upon verification scenario, which has
been the subject of recent privacy concerns. To aid in
privacy protection, options such as download once,
use many, regularly scheduled TE retrieval, or other
connectionless verifications are recommended.

With that caution noted, both of these governance
creation and usage scenarios provide tremendous
improvement over the centralized governance
models that exist today. If used together, the ToIP
solution and the DIF model appear mutually beneficial
and provide different benefits to the decentralized
governance operating goals.

