
Is it Safe Enough to Store Files?
The Cloud:

Cloud Storage is amazing... and risky

ANONYOME LABS

The 2000s may be over, but cloud storage is still amazing.
Services such as Dropbox, Apple’s iCloud, Google’s Drive,
and Microsoft’s OneDrive all help users share files with
friends, recover when a hard drive crashes, and move
files between their devices. Still, hearing about data
breaches[¹, ², ³] leaves people wondering whether their
data is safe in the cloud.

anonyome.com

http://anonyome.com
https://www.dropbox.com
https://www.icloud.com
https://www.google.com/drive/
https://www.microsoft.com/en-us/microsoft-365/onedrive/online-cloud-storage
https://www.darkreading.com/vulnerabilities-threats/dropbox-files-left-unprotected-open-to-all
https://www.vice.com/en/article/nz74qb/hackers-stole-over-60-million-dropbox-accounts
https://www.infosecurity-magazine.com/news/dropbox-breach-130-github/
http://anonyome.com

Security on today’s cloud lacks
end-to-end-encryption

We can make the cloud safer

Today’s cloud storage services use fairly similar client–server architectures that start with a locally installed
application that monitors a specific file folder on a user’s computer. When the app detects changes in the folder,
it relays them to the user’s account on the cloud. The cloud service handles copying them to a user’s other
devices.

One of the problems with cloud storage is that files are not end–to–end encrypted (E2EE) – meaning that files
encrypted before leaving a user’s device do not remain encrypted until they return. Rather, most providers use
the transport encryption + encryption at rest paradigm. In this model, transport encryption encrypts files sent
to the server (e.g., HTTPS), but decrypts them upon arrival. Next, the server applies encryption at rest so that
only encrypted files are stored. While providers tout the strength of their encryption algorithms (e.g., AES 256),
what they don’t highlight is that the server decrypts user files before re–encrypting them and that they hold the
decryption keys!

Figure 1 shows how this process works:

CLOUD
STORAGE

CLIENT

CLOUD
STORAGE
SERVER

DROPBOX, ICLOUD,
GOOGLE DRIVE,
ONEDRIVE, ETC.

1

2

GET STARTED

3

4

PROVIDER
CONTROLLED

FOLDER

ENCRYPTION
AT

REST

While this model is efficient, it is vulnerable to attack and unfortunately is the mainstay of cloud storage. This
leaves users wondering: Are cloud providers accessing my data? and Can hackers steal my digital files?

Answering those questions is difficult and varies over time. So, how do individual users protect their files in the
cloud? One idea is to help users layer end–to–end encryption (E2EE) on top of any features the cloud storage
services provide. This is fairly easy using the cryptographic features of decentralized identity (DI).

Figure 1 - Cloud storage overview

anonyome.com

Store (for a long time)
and forward (later)

Internet communications are based on the store and
forward paradigm. In this model, when a user sends
a message, it is divided into packets that are relayed
between message servers (sometimes waiting at each
relay) until they reach their destination. This is a good
model and can be applied to file storage.

One of the advancements introduced by DI is a
specification known as DIDComm. Much like the
internet’s store and forward paradigm, DIDComm

SENDER RECEIVER

{
 “id”:1234567890”,
 “type”: <message-type-url>”,
 “from”: “did:example:alice”,
 “to”: [”did:example:bob”],
 “created_time”: 1516269022,
 “expires_time”: 1516385931,
 “body”: {
 “message_contents”:value”
 }
 }

Figure 2 - Simple DIDComm message

In the DIDComm model, if a message is sent by User A and is only addressed to User
A, then it can only be decrypted by User A—no matter where the message travels. This
capability provides a good basis for securing provider–independent cloud storage.

anonyome.com

defines a method of applying E2EE to encrypt messages
between a sender and a receiver. E2EE ensures that
DIDComm messages are never decrypted to plaintext
except by the designated recipient. DIDComm messages
are formatted using JavaScript Object Notation (JSON)
with header information that denotes sender and
receiver along with an encrypted message body. Figure
2 shows a simple DIDComm message:

https://identity.foundation/didcomm-messaging/spec/v2.0/
https://didcomm.org
https://www.json.org/json-en.html

1. User A: encrypts a file (addressed to User A) using DIDComm

2. Cloud Storage: receives and stores the DIDComm message (i.e., E2EE)

3. User A: sometime later retrieves the file and decrypts it.

MEME

Figure 3 - Encrypt - store - decrypt process

Here’s a high-level overview of the encrypt – store – decrypt process:

Given the E2EE benefits of DIDComm messaging, the fully encrypted message files may be safely stored on the
provider’s cloud storage. This process resembles an enhanced version of standard internet communications:

store (for a long time) and forward (later).

What is a DID?
In Figure 3, the encrypt–store–encrypt model is
illustrated by a user sending a delayed delivery
message to themself. We might playfully call this
me–to–me communication in order to highlight that
being both the sender and receiver of messages lets
us use modern technologies in tangential ways that
have significant benefits.

Even though the Me shown in Figure 3 depicts
a user sending a message to themself, the DI
protocols require a user to identify themself using
a decentralized identifier (DID). There is an entire
specification describing DIDs, but generally they
resemble web URLs:

did: example: 123456789abcdefghijk

Scheme

DID Method DID Specific Method String

https:// example.com/123456789abcdefghijk

Scheme

Website Webpage

Figure 4 - Comparing DIDs to URLs

anonyome.com

https://www.w3.org/TR/did-core/

While DIDs can come from many different providers, the simplest form of a DID is one that users (or their apps) create
for themselves. This type of DID is called a “DID key” and denoted by the prefix did:key. Using the example from Figure
4, a DID key takes the form of did:key:123456789abcdefghijk where the latter element is simply an encoded version of
the public key that the user has created.

Usability comes from extending the cloud
storage synchronization method

While the encrypt – store – decrypt process presented
in Figure 3 is straightforward, automating it will make
it very simple for users. Automating this process will
leverage the same synchronization model that today’s
cloud storage utilizes.

In contemporary cloud storage synchronization, the
cloud storage service installs a cloud storage client
application on user’s device. This client application
monitors a specified directory on a user’s device and
watches for changes to its file content. Those changes

CLOUD
STORAGE
CLIENT

CLOUD
STORAGE
SERVER

1

2

GET STARTED

3

4

USER’S
ENCRYPTION
SYNC APP

PROVIDER
FOLDER

USER’S COMPUTER CLOUD STORAGE PROVIDER

Figure 5 - Extended cloud storage synchronization method

The process described in Figure 5 (above) illustrates two synchronization processes. The first is performed
by the cloud provider’s Cloud Storage Client application, which remains unaltered and operates as intended –

namely, to synchronize files between the Provider Folder and the cloud.

anonyome.com

are synchronized with the cloud storage and replicated
out to a user’s other devices.

Instead of applying the encrypt – store – decrypt
process to the cloud exactly as depicted in Figure 3, its
concepts will be used to create an enhanced process
that will synchronize (while encrypting/decrypting) files
between a new user’s plaintext folder to be created
on the user’s local system (e.g., /Users/username/
PlaintextFiles/) and the folder monitored by the cloud
storage provider (e.g., /Users/username/Dropbox/).

The second synchronization process depicted in Figure 4 (above) is the new User’s Encryption Synchronization
Application. This application monitors for changes (e.g., additions, deletions, modifications) in the User’s Plaintext
Folder and also changes in the Provider Folder. When additions or deletions are detected in the User’s Plaintext
Folder, those files are encrypted and copied to the Provider Folder. When a file is deleted from the User’s Plaintext
Folder, its encrypted version is deleted from the Provider Folder. Similarly, when an encrypted file is added to or
modified in the Provider Folder, it is decrypted and copied to the User’s Plaintext Folder. When encrypted files
are deleted from the Provider Folder, their unencrypted variants are deleted from the User’s Plaintext Folder.

1. Simple

 Uses only local file synchronization; no network 	
 communication.

2. API independent

 Does not use any cloud provider APIs.

3. Interoperable

 Can synchronize files to any cloud provider’s folder.

4. Standardized

 Using DIDComm leverages open-source standards 	
 for encrypted files.

5. Algorithm choice

 Users may change encryption algorithms as 	
 desired.

6. Key management

 Users maintain their own keys (in a DI wallet) and 	
 don’t need to worry about how a cloud provider 	
 might protect them.

Figure 6 - Benefits of synchronizing the encrypt - store - decrypt process

anonyome.com

This process has several benefits:

Encrypted file format
DIDComm messages are formatted as plaintext JSON
structures. For cryptographic security, the sensitive
elements of a DIDComm message are encrypted
using a selectable set of encryption methods, such as
AES256-GCM, AES256-CBC with an HMAC-SHA512, etc.
Currently, the available elliptic curves include X25519,
P-384, P-256, and P-521. As quantum encryption
methods are finalized, it is foreseen that those
algorithms will be quickly adopted into a future iteration
of the formal DIDComm Messaging Specification.

A detailed description of the DIDComm message format
is left to the DIDComm Messaging v2.0 specification.

For reference, Figure 7 depicts an encrypted DIDComm message:

{
	 “protected”:”eyJ0eXAiOiJhcHBsaWNhdGlvbi9kaWRjb21tLWVuY3J5cHRlZCtqc29uIiwiZW5jIjoiQ
	 TI1NkdDTSIsImtpZCI6IldfVmNjN2d1dmlLLWdQTkRCbWV2VnctdUpWYW1RVjVyTU5RR1V3Q3FsSDAiLCJza2lkIj
	 oiZGlkOmtleTp6Nk1raVRCejF5bXVlcEFRNEhFSFlTRjFIOHF1RzVHTFZWUVIzZGpkWDNtRG9vV3AiLCJhbGciOiJ
	 FQ0RILTFQVStBMjU2S1cifQ”,
	 “recipients”:[
		 {
			 “header”:{
				 “key_ops”:[],
				 “alg”:”ECDH-1PU+A256KW”,
				 “kid”:”did:key:z6MkiTBz1ymuepAQ4HEHYSF1H8quG5GLVVQR3djdX3mDooWp”,
				 “epk”:{
					 “kty”:”OKP”,
					 “crv”:”X25519”,
					 “x”:”sI4GXfe7pHrZ1I3jhB_UT34Iw5IMvgf8npd2UwLUe1I”
				 },
				 “tag”:”MyYLSqwL-zV5p4KIG6hfaQ”,
				 “iv”:”z77anoWbR0v7Ihec”
			 },
			 “encrypted_key”:”XkWFukZDBuz2Jx82w1uvpM6Pl6T9XJJQg3Bx9x4AV2w”
		 }
],
	 “ciphertext”:”2Rhl0fvf1frZI_hUhY2-
	 O7ld9sWphf5XCMOY1ebqSmZjff_FyC19FrKoxRAYQueyHn9jwU
	 -u1qC0bTFb17YFu0ViFmx0SsIkL1ntyJlurpxoWs4eqkil2BHrriyW2bC8aUp5vrstenG8gckAA4jq57x_HoL2v8ry
	 hLyvOUkrza2Pk0W0P8afIE99F74A0Feno47aganUD5Jg_OlxC07h4Zkqv-
	 qltyoaf6ot0IadEc7e4AdQUdriEliacxZMMb87vzudFv4-5DrNCTfSdOqP-UqlzyJYjgoJkYD81cGjC-
	 yvTPJVU5_msfOD4n6DXU0JKgPdU0R6KoyTBhiB8Arr_i5kgzaQVcq0roiHEp04gJrYeMH6jHsSPIh7CNCMz3U3KMJ
	 _wFMjSDnKiDLFU3g2SFC2IpWuBrgCfII_KvftFgIMEtXvgd-iX1QT1B6TkGWyhgnZUsmt8FXDrBGuNgRbvPoOZk-
	 ewol0eq5dRI5IoVI9GQU5oxIyImKTcoi00mPqtyWyXc_CfRrJXKRUANUtjefonKeQFtieqh4451e_Fgd10UGPY3yl
	 L82krZtGh-QLqxqXqDMuzvw29hsYOdmYgr8m-
	 dCWcaULW6lLN69QDVOnT4cin1n2Q0QGGnisS__VobkzYVBAHd_30NyvzgXjuCFXmHho9LM-
	 CTjv92JmmZrZFWIFAEsqK5zB24bBfW7A1Ouf7FKo4TfXLr_z17amyDVpxL27U6b4yMbXuPemNUk7-
	 z7km7NS8ffwZcKZko-
	 R4NOlf56RZ1ZELTWhqgrfF_X7FzTpyJj7PzAI9zuNSzliIHRW7qOTdT_CcBFmrXiJGUNrLmI5C74PcctrdVLC93YR
	 hfNVsGWDaKtQbnnXg3WQirVwDpELUludE-aXgeOHSjv7UhvnInEKglsNiCgSs40Kf06ToLDHpi1hwFBFoHwq-
	 Ad5wrD_EOvMTvW8LmFSpru1”,
	 “iv”:”2jBWPDXxzTcFWBVx_jGnTXf8p5ANi4rJ”,
	 “tag”:”6wQn2QSRhnVq4qRUC-dP2Q”
}

Figure 7: Sample encrypted DIDComm message anonyome.com

However, Figure 7 (below) has one particular field that is
of particular note to this process. The recipient’s name
field contains a name field called header, which has a
member kid. In DIDComm, kid contains the recipient’s
public key which was used to encrypt the ciphertext.
While the DID specified in this field can use a wide
range of DID methods, for the purposes of this use
case, a simple did:key is used. Since the user is creating
this DIDComm message to be sent (or stored) only
to themself, using a did:key that represents a keypair
already contained within the user’s DI wallet is the
simplest option.

https://identity.foundation/didcomm-messaging/spec/v2.0/

Encrypted file naming

File management dilemma

Creating a name for an encrypted file is not as simple as encrypting it. In part, this is due to some encryption
algorithms having cyphertext output lengths that are different from their plaintext inputs. This could potentially
result in encrypted filename lengths that are longer than the maximum that the host file system allows.

In order to avoid these types of situations, ciphertext file names are created as an HMAC256 encoding of the
plaintext filename, which has been subsequently base58 encoded. HMAC256 provides sufficient cryptographic
protection and ensures a limited text length, while the base58 encoding ensures that no incompatible characters are
present in the resulting name string.

Using the DIDComm message format greatly simplifies the implementation of extensible encrypted file storage.
When the User’s Encryption Sync App (described above in Figure 5), detects file changes in the User’s Plaintext
Folder, it will handle them as follows:

When the User’s Encryption Sync App detects changes in the Provider Folder (i.e., containing the encrypted files), it
will do the following:

anonyome.com

New file:
The detected file will be encrypted
and copied into the Provider Folder.
The name of the encrypted file in the
Provider Folder will be an HMAC256
encoded version of the plaintext file
name that has also been base58
encoded.

New file:
Decrypt the encrypted file and create
the corresponding plaintext file in
the User’s Plaintext Folder.

Modified file:
Modified files are handled
essentially the same as new files
with the addition that the existing
encrypted file will be overwritten by
the newly encrypted file.

Modified file:
This operates essentially the same
as with creating a new file. The
encrypted file is decrypted, and
the corresponding plaintext file
is created in the User’s Plaintext
Folder. Any existing plaintext file is
overwritten.

Deleted file:
When deleting a plaintext file, the
corresponding encrypted file must
be deleted from the Providers
Folder. To do this, the plaintext
filename is first encoded in the
same way as for new files. The
Provider Folder is searched for a file
with the encoded name, which is
deleted when found.

Deleted file:
When an encrypted file is deleted
from the cloud storage provider’s
cloud, that file delete action is
replicated on the user’s device and
results in the encrypted file being
deleted from the Provider Folder. By
the time that the User’s Encryption
Sync App detects that an encrypted
file has been deleted, it has already
been deleted. This means that the
filename cannot be decrypted (using
any information contained within the
file) to know which corresponding
plaintext file to delete. This situation
requires special handling.

Adding a new file header
Handling the case where encrypted files are deleted before their plaintext counterparts (as described above) is
best addressed by adding a new file header that will be prepended to the DIDComm message in the encrypted
file. Figure 8 depicts the new file header:

{
	 “encrypted_filename”:”Y6MNigbxeQHUbJgjWQWJpv”,
	 “filename_hmac256”:”8JAFm29SoTanBEkEdQgNnYMUn1xPuo6mLrLrFt7EFHo4”,
	 “key_id”:”11111111111111111111111111111111”
}

The file header has three members:

1. encrypted_filename: an AES256 encryption of the
plaintext filename with the encrypted output being base58
encoded

2. filename_hmac256: an HMAC256 computation of the
plaintext filename with the output being base58 encoded

3. key_id: a textual identifier of the AES encryption key
that is created and is contained within the user’s DI wallet.

This header implements the functionality described above.
It also allows the easy decryption and recognition of the
target plaintext file.

Figure 8 - Encrypted File Header

anonyome.com

Deleting the plaintext file when the
encrypted file has already been deleted

When deleting a plaintext file associated with an encrypted file that has already been deleted, it is necessary
to search for the plaintext file since it is not possible to directly identify it. The algorithm for locating the
plaintext file is depicted in the following Rust language code:

fn plaintext_file_associated_with_encrypted_file(
	 encrypted_filename: String,
	 source_root: String,
 	 dest_root: String,
 	 key_id: [u8; AES256_KEY_LENGTH]) -> String {

	 let mut file_to_delete: String = “”.to_string();

	 // Scan the plaintext directory. For now, this only scans the directory.
	 // and not sub-directories. Eventually, this will scan the entire sub-directory
	 // tree.
	 let paths = fs::read_dir(dest_root.clone()).unwrap();
	 for path in paths {
		 if let Ok(p) = path {
				
			 // Get a String representation of the path.
			 let filepath = p.path().clone().into_os_string()
			 .into_string().unwrap();

			 // Remove the full path component to get the relative path portion.
			 let file_rel_path = filepath.replace(&dest_root, “”);

			 // Create a hash of the relative file name and create mock-up of a
			 // would be encrypted file.
			 // This enables the calculated_encrypted_filename to be compared
			 // with the actual encrypted_filename that was deleted.
			 let hashed_filename = hash_filename(file_rel_path.clone(),
			 key_id.to_base58().clone());
			 let calculated_encrypted_filename = source_root.clone() +
			 &std::path::MAIN_SEPARATOR_STR.to_owned() +
			 &hashed_filename;
			 if encrypted_filename.to_string() ==
				 calculated_encrypted_filename.to_string() {
				 file_to_delete = filepath;
				 break;
			 }
		 }
	 }
		
	 return file_to_delete;
}

Figure 9 - Calculating the plaintext filename associated with an encrypted filename

anonyome.com

The method described above searches for the target plaintext filename by encrypting and base58
encoding each file in the directory and comparing that with the encrypted filename that was reported as
deleted. While this method is not as fast as directly decrypting an encrypted filename, it handles the case
of needing to match an existing plaintext file to an encrypted file that is no longer available.

With pretty printing applied, the full DIDComm encrypted message with the added file header (which is
what is written to the encrypted files) will appear as follows:

{
	 “encrypted_filename”:”Y6MNigbxeQHUbJgjWQWJpv”,
	 “filename_hmac256”:”8JAFm29SoTanBEkEdQgNnYMUn1xPuo6mLrLrFt7EFHo4”,
	 “key_id”:”11111111111111111111111111111111”
}
{
	 “protected”:”eyJ0eXAiOiJhcHBsaWNhdGlvbi9kaWRjb21tLWVuY3J5cHRlZCtqc29uIiwiZW5jIjoi
	 QTI1NkdDTSIsImtpZCI6IldfVmNjN2d1dmlLLWdQTkRCbWV2VnctdUpWYW1RVjVyTU5RR1V3Q3FsSDAiLCJza2lkIj
	 oiZGlkOmtleTp6Nk1raVRCejF5bXVlcEFRNEhFSFlTRjFIOHF1RzVHTFZWUVIzZGpkWDNtRG9vV3AiLCJhbGciOiJ
	 FQ0RILTFQVStBMjU2S1cifQ”,
		 “recipients”:[
		 {
			 “header”:{
				 “key_ops”:[],
				 “alg”:”ECDH-1PU+A256KW”,
				 “kid”:”did:key:z6MkiTBz1ymuepAQ4HEHYSF1H8quG5GLVVQR3djdX3mDooWp”,
				 “epk”:{
					 “kty”:”OKP”,
					 “crv”:”X25519”,
					 “x”:”sI4GXfe7pHrZ1I3jhB_UT34Iw5IMvgf8npd2UwLUe1I”
				 },
				 “tag”:”MyYLSqwL-zV5p4KIG6hfaQ”,
				 “iv”:”z77anoWbR0v7Ihec”
			 },
			 “encrypted_key”:”XkWFukZDBuz2Jx82w1uvpM6Pl6T9XJJQg3Bx9x4AV2w”
		 }
],
	 “ciphertext”:”2Rhl0fvf1frZI_hUhY2-
	 O7ld9sWphf5XCMOY1ebqSmZjff_FyC19FrKoxRAYQueyHn9jwU-
	 u1qC0bTFb17YFu0ViFmx0SsIkL1ntyJlurpxoWs4eqkil2BHrriyW2bC8aUp5vrstenG8gckAA4jq57x_HoL2v8ry
	 hLyvOUkrza2Pk0W0P8afIE99F74A0Feno47aganUD5Jg_OlxC07h4Zkqv-
	 qltyoaf6ot0IadEc7e4AdQUdriEliacxZMMb87vzudFv4-5DrNCTfSdOqP-UqlzyJYjgoJkYD81cGjC-
	 yvTPJVU5_msfOD4n6DXU0JKgPdU0R6KoyTBhiB8Arr_i5kgzaQVcq0roiHEp04gJrYeMH6jHsSPIh7CNCMz3U3KMJ
	 _wFMjSDnKiDLFU3g2SFC2IpWuBrgCfII_KvftFgIMEtXvgd-iX1QT1B6TkGWyhgnZUsmt8FXDrBGuNgRbvPoOZk-
	 ewol0eq5dRI5IoVI9GQU5oxIyImKTcoi00mPqtyWyXc_CfRrJXKRUANUtjefonKeQFtieqh4451e_Fgd10UGPY3yl
	 L82krZtGh-QLqxqXqDMuzvw29hsYOdmYgr8m-
	 dCWcaULW6lLN69QDVOnT4cin1n2Q0QGGnisS__VobkzYVBAHd_30NyvzgXjuCFXmHho9LM-
	 CTjv92JmmZrZFWIFAEsqK5zB24bBfW7A1Ouf7FKo4TfXLr_z17amyDVpxL27U6b4yMbXuPemNUk7-
	 z7km7NS8ffwZcKZko-
	 R4NOlf56RZ1ZELTWhqgrfF_X7FzTpyJj7PzAI9zuNSzliIHRW7qOTdT_CcBFmrXiJGUNrLmI5C74PcctrdVLC93YR
	 hfNVsGWDaKtQbnnXg3WQirVwDpELUludE-aXgeOHSjv7UhvnInEKglsNiCgSs40Kf06ToLDHpi1hwFBFoHwq-
	 Ad5wrD_EOvMTvW8LmFSpru1”,
		 “iv”:”2jBWPDXxzTcFWBVx_jGnTXf8p5ANi4rJ”,
		 “tag”:”6wQn2QSRhnVq4qRUC-dP2Q”
}

Figure 10: DIDComm encrypted file with file header

anonyome.com

Additonal use cases are around
survivable encryption
Selecting the DIDComm encrypted message format for
protecting files stored on cloud storage platforms has
resulted in several benefits as described. However, since
DIDComm was designed as a messaging format, it may
enable a wide range of additional use cases that could
be built on top of the encrypted file storage architecture
that has been presented.

One additional use case is survivable encryption.
Many people like to keep daily journals, document
their inventions, record financial account activity, keep
cryptographic wallets, etc. and want to backup those
data stores to the cloud in order to protect against a
wide range of disasters. Even the most privacy-centric
users may want to have the option of keeping their data
protected while they are alive and then having it securely
delivered to their heirs, some day.

Some data survivability services will hold user data and
deliver it to designated heirs upon verification of a user’s
death. This is a valuable service, but it usually implies
that the service will have control of the unencrypted
versions of the data being preserved. Even if the
survivability service has a privacy policy, it is of little
comfort to the security conscious when such policies
say (in effect), “You can trust us, because we have a

Final answer to our first question?
E2EE messaging capability would make
the cloud safer
Cloud storage is an amazing invention and delivers a wide range of measurable benefits, but in its current form,
most cloud storage architectures leave the data entrusted to them somewhat vulnerable. The DIDComm messaging
specification was created to provide a platform-independent yet interoperable encrypted messaging capability that
enables users of a wide range of DI platforms to exchange end-to-end encrypted messages. This E2EE messaging
capability can be used to secure files stored on virtually any cloud storage platform without divulging any plaintext
file data content to the cloud service. Further, by storing secure files in an encrypted messaging format, those files
can potentially be activated to later perform a myriad of secure file services for security and privacy conscious users.

anonyome.com

privacy policy ...” or “Your data is safe, because we
promise to ...”.

For privacy-oriented users, the DIDComm specification
enables them to take direct control of their data’s
security. Since DIDComm inherently facilitates multiple
recipients, a user could setup their User’s Encryption
Synchronization App (as described above) to archive
their files, not only addressed to themself, but also
addressed to anyone they designate as an heir. Doing
this leaves each file in an undelivered state where both
the user and their heir(s) can, upon receipt, decrypt the
files at some future date.

Instead of maintaining control of the plaintext data,
the survivability service would only need to know when
and upon what condition (e.g., death certificate) they
are instructed to release the DIDComm encrypted files
and then be able to transmit the encrypted data files
as previously specified by the user (in the DIDComm
message). This method enables users to select their
own heirs while contracting with a survivability service
that will perform the posthumous file delivery without
the service being able to access any of the plaintext
data content.

Note

A cloud storage encryption service based on
the concepts described in this whitepaper
has been reduced to practice as an open-
source tutorial. Both the detailed tutorial and
the corresponding source code (Rust and
Java) can be found at: https://github.com/
sudoplatform-labs/protecting-cloud-storage

anonyome.com

https://github.com/sudoplatform-labs/protecting-cloud-storage
https://github.com/sudoplatform-labs/protecting-cloud-storage

